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A Method for the Computation of the Characteristic Immittance

Matrix of Multiconductor Striplines with Arbitrary Widths

L. J. PETER LINNER, MEMBER, IEEE

‘~bstracf—fln exact method for the computation of the charac-

teristic impedance matrix of coplanar coupled multiconductor strip-

Iines with arbitrary widths is presented. The system of conductors is

enclosed in a rectangular shielding box with a homogeneous di-

electric medium. Use is made of conformal mapping by hyperelliptic

integrals. The reverse problem of determining the geometrical

dimensions for a given characteristic impedance matrix is solved

by employing an optimization procedure in conjunction with care-

fully determined initial approximations. This yields low computer

~ning time compared to current methods for the treatment of

‘multiconductor transmission lines.

—
I. INTRODUCTION

T HE PROBLEM of determining the characteristic

impedance parameters of transmission lines has been

of great interest for a long time; in the beginning~ chiefly

from a mathematical–physical standpoint. In [1] many

of these earlier works have been collected. Mostly, the

approach taken has been to consider the existence of

(quasi-) TEM modes only, thereby transforming the

problem to that of determining Maxwell’s capacitance

matrix of the conductors for a two-dimensional static

electrical potential problem. In the next step one can

proceed in several ways as follows. 1) Solve the Laplace

equation in the region of interest, either exactly with

orthogonal polynomial expansions, or with finite difference

methods. 2) Use the conformal mapping technique to

transform into a structure with known properties. 3) Solve

integral equations derived from Green functions, to men-

tion the most common methods.

A multitude of different methods under 1) –3) mentioned

previously is available for single or multiple conductor

transmission lines. The dielectric filling between the con-

ductors may be homogeneous or not. Below, the restricted

problem of multiple-strip transmission lines between

parallel ground planes and with homogeneous dielectric

will be treated, although extensions that approximate
inhomogeneous cases can be made, for instance, as in [2].

In 1943 Magnus and Oberhettinger [3] presented several

new practical single-strip transmission lines with exact

formulas for the characteristic impedance. The single-strip

conductor with zero thickness symmetrically placed be-

tween two parallel ground planes with and without walls

was treated. Later, Cohn [4] gave graphs and correction
formulas for the second case with a nonzero-strip thickness.
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Exact formulas were provided by Bates [5]. Other works

on single-strip transmission lines can be found in [6]–[9].

By introducing the even and odd wave impedances

Cohn succeeded in arriving at exact formulas and versatile

nomograms for the analysis of the symmetrical coupled

two-strip transmission line between parallel ground planes

[10]. Also, he included correction formulas for nonzero

thickness. Ekinge [8] gives formulas in the case when the

symmetrical two-strip conductor is surrounded by a

shielding rectangular box. The symmetrical case has also

been treated in [6] and ~9]. The nonsymmetrical case in

which the two coupled strips are of different widths has

been given some attention with the previously mentioned

methods 1) as well as 2) in an approximate manner [9],

[11]-[13]. However, the results obtained differ consider-

ably. This case (with side walls as well) will be included

in the exact analysis which follows.

Multiple-strip transmission lines with more than two

inner conductors have been treated before to some extent.

Thus Itakura et al. [14] have derived exact formulas for

the case with three conductors with equal-width outer

conductors and conductor spacings. General N-strip

transmission lines have been approximately analyzed by

considering the different conductors as a number of pairs

of coupled conductors b y methods such as [8] and [10]. In

case of equal widths and spacings of the conductors there

exists an extension of the method in [10] also used in

[14], whereby an infinite array of conductors is considered.

The reasoning is as follows. The conductors are given equal

potentials with opposite signs periodically repeated along

the array. By combining such different modes it follows

from superposition that nonadjacent conductors can be

given opposing potentials and the conductors in between

the potential zero. This was first shown by Dunn [15] and

later transferred to the case with the equal-width equal-

spacing strip conductors on the line of symmetry between

the two parallel ground planes [16] and [17]. Lennartsson

[18] has presented a network analogue method for the

solutions of the two-dimensional Laplace’s equation.

Three-conductor systems in a stratified dielectric within

a surrounding rectangular box can be readily analyzed on

a computer at the expense of time consumption and lack

of direct error control. An additional feature of this method
is that conductors situated on separated parallel lines can

be treated.

In the following, an exact analysis of a multiple-conduc-

tor strip transmission line placed symmetrically between

two parallel ground planes with or without side walls
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will be given. The conductor widths and the spacings in

between can be assigned arbitrarily.

II. CONFORMAL MAPPING BY SCHWARZ-

CHRISTOFFEL TRANSFORMATIONS

The conformal mapping technique has been applied to

a variety of problems in engineering and physics. The

invariant property of the Laplace equation under such a

transformation makes it possible to transform the problem

to a (simpler) geometry, where a solution is available or

can” be readily found. This technique will be used below

as well.

The basic problem connected with characteristic im-

pedance analysis is that the region to be mapped is multi-

ply connected. This has been avoided by considering

symmetrical geometries only. In such cases the mapping

of a subregion with the conductors on the boundary is

possible. Thk is the starting point of the theory.

Consider a multiple-conductor stripline between two

parallel ground planes, Fig. 1. Here the widths and spac-

ings of the n inner conductors can be chosen arbitrarily.

The dielectric constant of the homogeneous medium is

e, and the case with no side walls can be treated by setting

d = ca. The upper half-plane part. of the rectangular box

can now be mapped into the entree upper half-plane in

Fig. 2 by a Schwarz–Christoffel transformation. This can

be conveniently expressed in Jabobi’s elliptic functions

x-plane
x..

Tb
CJiel.Canst,=q

bI&”’”&’$F---
Fig. 1. The multiconciuctor s:~l:~dne surrounded by s, rectangular

y-plane

diel. ccmt. = &

Fig. 2. The intermediate mapping step.

field is obtained when a certain voltage distribution is

applied to the n inner conductors. This is again achieved

by a Schwarz–Christoffel transformation. The final con-

figuration with the required properties is shown in Fig. 3.

The mapping function is given by

dz

~= ii (Y – Yom)/’ii’ (y – LJm)’l’ (3)
m-l ; ?n#k ~=1

where

and

as given by
where each of the numerator factors accounts for 180°

‘=S”F%X’l (1)
bends at n – 1 of the conductors in Fig. 3. There are n

such mappings with the lcth conductor unfolded. A homo-

geneous electric field is now obtained for any voltage

applied to conductor k with the remaining conductors left

‘=[::!:;l

on floating potentials. This is obvious from the boundary

conditions on the side walk: &j/8n = O.

The geometrical dimensions of Fig. 3 are given by defi-

nite integrals of (3). However, the numerator polynomial

()
K’[k(x)] = ;.t’ 0] +

roots of the integrand are not given explicitly. To deter-

mine the numerator polynomial consider the following

kind of integrals:
with

k = 1)/d and i = (–1)1/2.

This is clear from [19] and [3] when considering the

module equation

K’(k) b

K(k) = 2“
(2)

Here K is the complete elliptic function of the first kind,

and Vj(0) are Jacobi’s theta functions as given in [20].

The configuration with no side walls, d = w, can be

obtained from (1) as a limiting case:

y = tanh (mz/b) (d= co). ( la)

It deserves mentioning that the use of Jacobi’s theta

functions facilitates tie numerical computations con-

siderably [19].

/

w i+l ‘n+’

Fij = [?4-’/ ~ (?J – ym)’1’] dy (4)
‘uZi ~= 1

where the path of integration is along the ith conductor

in Fig. 2. From Fig. 3 it appears that the total integral

must equal zero:

(5)

for all conductors but the kth one because 22, = zz~+l.

Rather than try to solve for the polynomial roots of the

numerator in (3) the corresponding coefficients aj have

been introduced. Thus the polynomial coefficients are

determined from

~k(h = (), (k=l+n) (6)

In the next step we look for a mapping function which for each conductor k unfolded. Here Fh is an (n – 1) X n

transforms the y plane in such a way that a homogeneous matrix obtained when the iith row is deleted from the
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z-plane
w~

r 1

“o

Fig. 3. The final mapping step where the field can be
homogeneous for certain conductor potentials.

matrix

F=

“FII Frz . . . FIn

F.ZI FZZ
. .

[

. .

. .

Fm F nn

made

The matrix elements are determined by (4). The poly-

nomial coefficients are given by the column vector

(h = [f%l,ak?, --- (&]T

with its. first element arbitrarily chosen equal to unity.

Now, consider the integrals

1 u2i 27k+2
.

/“~ = (– 1)1/2 ~,i_,
[y*’/ I-1 (?J – wlz)’q dg. (7)

~=1

To obtain the distances between consecutive conductors

along the magnetic walls of Fig. 3, sums of the following
kind must be compu%ed:

~ ajGij.
~=1

Next, the distance column vector

dfi = [dlk,dzk, --- dn+l,~]T

with its elements given in Fig. 3 is computed from

dk = (%k

where

r

Gn G12 . . . G,n

G21 G22 1

G= . I

(8)

(9)

and the elements are given by (7). From dk, the distances

between the different conductors and the ground con-

ductors,

hk = [hlk,h2k, “ “ -hnk]T

are easily determined. Finally, the length of the Icth

unfolded conductor in Fig. 3 Wk is given by

wk = jkTak (lo)

where fkT is the lcth row of F. The integrals in (4) and (7)

appear to be improper with the integrand behaving singu-

larly at the endpoints. The analytical and numerical

aspects of such integrals are discussed in the Appendix.

III. THE DETERMINATION OF THE

CHARACTERISTIC IMMITTANCE

MATRIX

The configuration of Fig. 3 can now be used to deter-

mine the characteristic impedance matrix

Zll ~12 . . . .qn

Z21 Z22
. .

. .

. .

.Znl znn_

(11)

To do this consider the Maxwell’s per-unit length capaci-

tance matrix of the n-conductor system [Fig. 4(a)]:

c=

Cll —~12 . . . —cl.

—C21 C22
. .

. .

. .

—C*1 cnn_

n
where ci~ = c< + ~ Cij.

+1; j#i

(12)

(13)

This matrix is related to YO = 20–1 by the relation

YO = vC, where v = cO/ (c,) 112 is light’s velocity in the

dielectric medium while CO is the velocity of light in

vacuum. Now, apply a unit dc voltage between conductor
k and the ground J, with the remaining conductors left

with floating potentials in Fig. 3. It is clear from the

previous discussion that the electric field is homogeneous

and that the paths of constant potentials parallel all

conductor surfaces. Thus every condgctor takes a poten-

tial that is proportional to its height above the ground

conductor J. To compute the elements of 20 consider

(11) as representing a resistive n-port Fig. 4(b), each

port with the ground and the corresponding conductor as

terminals. From the definition of the z parameters we have

( 14)

VZ and Ik represent the voltage and current at the lth

and kth ports, respectively. Returning to’ Fig. 3, this is
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4n“ I
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(b)
Fig. 4. (a) The per-unit length capacitances of a general n-

conductor transmission line. (b) Its characteristic impedance
matrix .20 representing a resistive n port.

exactly the condition to which we are confined with the

electric field in Fig. 3 kept homogeneous. Thus we have

for the diagonal elements of (11):

(15)

The factor 2 arises from the fact that the conformal map-

ping is applied to the upper half-space of Fig. 2.

The off-diagonal elements can be computed as follows,

recognizing the n-port voltage transfer function:

from elementary network theory. But Fig. 3 yields

h

Thus

(17)

( 18)

The complete characteristic impedance matrix is now given

by

z,
zfJ=—

2 (6,) 112

)
hn hlz h,.—— . .._
WI W2 w.

h.n hzz——
wl W2

(19)
. . .

. . .

. .

h.1 hn, hnn—.

WI W2
‘“I
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where the free space characteristic impedance ZO =

(go/c,) ‘/2 has been used. A simple inversion of (19) yields
the characteristic admittance matrix Yo.

The computational efforts can be.decreased by observing

the fact that characteristic immittance matrices are sym-

metrical. The number of definite integrals to be evaluated

therefore decreases from n (2n + 1) ton (3n + 1)/2.

IV. THE SYNTHESIS PROBLEM

So far, we have been concerned with the problem of

determining the characteristic immittance matrix for a

given structure, i.e., characteristic immittance analysis.

In practical design the reverse problem of determining

the structure for a given characteristic immittance matrix,

i.e., wave immittance synthesis, is of predominant interest.

The sparse treatment of hyperelliptic integrals in the

literature [4], [7] makes it still more difficult to find

their inverse functions. Thus in the synthesis the mapping

from Fig. 3 to Fig. 2 must be dorn.eby some type of optimi-

zation procedure employing a repeated mapping from

Fig. 2 to Fig. 3, while the mapping from Fig.

can be performed with the inverse function of

b
- — F(arcsin y,k)

z – 2K’(k)

2 to Fig. 1

(l):

(20]

where F is the normal elliptic integral of the first kind. In

the synthesis procedure used, the independent variable

vector is [g2,y3, . . . y2m]T. The objective function is the

summed squared difference of elements between the

characteristic admittance matrix wanted and that ob-

tained from the optimization procedure. Counting the

number of variables involved we obtain 2n – 1 and n (n +

1) /2, respectively, for the symmetrical matrix. To deal

with a well-determined problem only 2n — 1 elements of

the characteristic admittance matrix can be used in the

optimization. The most rational choice is the main diagonal

and the first offset diagonal corresponding to the conductor

shield and the neighboring conductor-conductor charac-

teristic admittances, these being the dominant quantities.

The reason for using only 2n – 1 out of 2n variables in

Fig. 2 is their inherent functional dependence. To show

this, employ the following bilinear transformation which

keeps – 1 and +1 as fixed points:

y+a
Yt = ——

ay+l”
(21)

It is now easy to show that a suitable transformation

always yields the constraint yz’ = —y~n–1’ from a choice of

a = { [(1 — y22) (1 — y2n+12) ]1/2

– (1 + Y2,!/2n+l) }/(Y2 + Y2n+l) . (22)

Thus there are only 2n – 1 independent variables. Still

more features can be drawn from (21). Obviously, the

transformation is an analytical mapping that keeps the

characteristic immittance properties invariant. In the

synthesis case we can use the mapping of (21) on the
Fig. 2 structure obtained to alter the conductor positions

of the final structure of Fig. 1. For example, a certain/ ..
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Fig. 5. (a) The nonsymmetrically coupled transmission lines. (b)–(d) Some characteristic admittance matrix
data for diiTerent geometrical dimensions.
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TABLE I

COMPARISON 13ETWEEN THE EXACT ANALYSIS AND THE APPROXIMATION WITH COHN’S METHOD APPLIED TO THE

NONSYMMEIYUCAL COUPLED TWO-WIRE TRANSMISSION LINE

“2 . E+l I Refer to Fig.5(a]I Deviation in percent (Yl, iY2J_Y 12)

k
‘1

, = .01 S-.1 s-l.

.01 -b.0f+5.7j+3.O -3.6 f+2.21+0 .13 +o.7ol+o.131-Q.lh
—

v% .1 -0.621+0 .8 V+2.2 -0. b21+0.5 h/+2.9 +0. 08/-0 . 02/+2.6

1. +0.071-2.71+0.09 +0.071-0.021+0. 11 +0.071-0.031+0. 12

.01 -5. v+9.81+9.b -2.81+h. ~1+2.9 +0.09/+0. 12/+0.01
10

.1 -0.621+0 .561+6.9 -0.491+0 .311+10.5 +0.071-0.031+7 1.5

conductor can always be placed anywhere on the line of

symmetry, or the conductors as a whole can be centered

to minimize the effects of the side walls. Of course, the

shape of the box can be arbitrarily changed in this step.

This flexibility obliterates the need to resynthesize a given

characteristic immittance matrix for different geometrical

structures.

For a useful synthesis procedure an effective optimiza-

tion procedure is not sufficient in terms of the number of

iterations needed, i.e., computer time and cost. It is also

important to support the synthesis procedure with a

sufficiently good starting approximation in Fig. 2 as

close as possible to the correct solution point in the

(2n – 1)-dimensional space. This is achieved with the

use of a modified Cohn procedure on consecutive pairs of

conductors in Fig. 1 with no side walls employed. This

is outlined in Section V. The latter condition is necessary

to obtain a good starting approximation and implies no

condition whether to use side walls or not in the finally

synthesized structure of Fig. 1. The optimization procedure

being employed in the synthesis procedure is a transitional

Newton iteration/steepest descent algorithm with in-

ternal computation of the Jacobian. This algorithm is due

to Powell [21].

V. RESULTS AND DISCUSSIONS

The method just mentioned has been programmed and

run on an IBM 360/65 for some time. Because of the

automatic quadrature algorithm employed, w-hich is

mentioned in the Appendix, it is possible to require an

analysis to be correct to a certain number of digits, thereby

reducing the computer time considerably for different

applications. The method has been checked against Cohn’s

method [10] and Ekinge’s rectangular box treatment [8]

which are exact in the case of two coupled symmetrical

conductors. No deviation in the first five digits of the

solution has been discovered. In the case of nonsym-

metrical coupled conductors, as in Fig. 5(a), some data

have been collected in Fig. 5(b) –(d). The characteristic

admittance for a configuration given by Fig. 5(a) has

been computed varying the distance between the con-

ductors, the width ratio, and the geometrical mean width.

From the diagrams it is observed that the conductor–

conductor characteristic admittance I YIZ \ as expected

only varies slightly for a fixed conductor spacing and

geometrical mean width. The deviation is smaller than 6

and 12 percent for wl/wz = (10)112 and 10, respectively.

These percentages also give an indication of the errors in

approximately computing the conductor spacings from

the inverse of Cohn’s method ~19] considering

yll’ = y22’ = (Y11Y22) 112 and w; = w2’ = (w1w2) 1/2.

Similarly, the widths can be computed with

Yn” = Y22° = yii and WI” = w2° = wi, (i = 1,2).

The resulting errors are shown in Table I for some cases.

The use of diagrams in finding the geometrical dimen-

sions is not convenient because of the many parameters

involved. A user-oriented computer program is far more

flexible and is necessary for cases with more than two

coupled conductors. Some results from such cases are

shown in Table II, where they are compared with data

from earlier works by Kollberg ~16]. It is shown how the

new method can be applied with an increasing number of

conductors to yield the characteristic coupling admit-

tances for an infinite array as a limit value. From Table

II it is obvious that a very good approximation of the

limit value is obtained as soon as the number of conductors

is great enough to prevent the two coupling conductors

from being the outer ones. Also the table gives an indica-

tion of the error involved using the approximate method of

Kollberg C16].

The computer running time in cases of analysis is less

than 1 and 2 s for two and three coupled conductors,

respectively, with a required accuracy of three digits in

the result. For a constant accuracy the running time is

roughly increasing with n2, where n is the number of

conductors. The synthesis procedure takes the same time

of analysis for each step of iteration in the optimization

algorithm. The number of iterations increases as Nnz

for multiple conductor systems.

It is also worth mentioning that the method given here

is applicable to any n-c{ ulductor problem that can be

conformably mapped on E’ig. 2. The most immediate

structures to extend the r, ethod to are those similar to
those previously mentioned, but with finite thickness.

Obviously, hyperelliptic mapping functions similar to

those used here can be employed in transforming from

Fig. 2 to the thick-conductor structure. However, addi-

tional optimization techniques must be used for such

structures.
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TABLE II

CHARACTERISTIC ADMITTANCE PARAMETERS FOR MULTICONDUCTOR TRANSMISSION LINES WITH EQUAL WIDTHS

AND SPACINGS

Rere, to I W. .1875, s . .625

723
.4372 .hrr2 .1,153 . w

_yI 3 8.24-2 T. TIJ-2 7.13-2 7<25-2

~2L -
T.74-~ T.zb-g T.25-?

-Ylb - 1.911-2 1.81-L 1. 60-~

-3’15
. - 4.81-x -

v = .625, , = .1875 w= 1.05, s= .35

3 4 5 -,[161 3 4 -,[161

2.840 2.841 2.8111 3.59a >.6U 5 .6U 6.095

3.387 3.391 3.393 3.598 5.71h 5.71L 6.095

2.8110 3.391 3.396 3.598 5.644 5.71k 6.095

1.168 1.16T 1.16T 1,200 .4317 .L1 tr .IL375

1.168 1.126 1.125 1.200 .kl 17 .4177 .4375

.106 9.T8-z 9.76-z 9.00-? 8. 99--z 8,99-> -

9.78-2 8.90-? 9 .00-? 8.99-1

2.03-~ 1.Wg 1,60-z 2.26-! -

k.zo-~ -

The Pable values are normalized to
the free space characteristic 8d-
mittmce

L –-lL--—....—
VI. CONCLUSIONS

An exact theory based on conformal mapping technique

has been developed for the analysis of multiconductor

striplines enclosed in a rectangular box with a homogeneous

,dielectric medium. Compared to methods based on lattice

approximations, such as [18], the advantages are the

following.

1) Explicit control of the error in the result.

2) A reduction in computer time of at least 30:1.

3) From 2) it also follows that the synthesis of charac-

teristic immittance matrices by employing optimization

algorithms is economically feasible. One important draw-

back of the method, which it shares with mapping tech-

niques in general, is that inhomogeneously filled media

can only be treated approximately.

The problem of synthesis has been solved for design

purposes by using an efficient optimization procedure

working with a repeated analysis technique.

APPENDIX

HYPERELLIPTIC MAPPING FUNCTIONS

In the mapping from Fig., 2 to Fig. 3 the following

mapping function is employed:

z(y) =
/ v [d (u – VOm);fi2 (Y – Yw)’121 dY. (Al)

—. ~=1 m.=1

From the theory of complex functions it is obvious that

we are dealing with a many valued analytical integrand

with 2n + 2 branch points and with interconnecting

branch cuts. However, if we make infinitesimal semicircle

indentations around the branch points in the upper half-

plane of Fig. 2, we can keep the path of integration in one

Riemann sheet. The closure of the integration path with

an infinitely large upper half-plane semicircle now guaran-

tees the closure of the mapping in Fig. 3. This is clear

from Cauchy’s integral theorem, because the contributions

from the integration on the semicircles around the branch

points tend to zero with the radius. The real part of the

Cauchy integral now shows that the width of the upper

and lower conductors, k and J, are equal. Analogously, the

imaginary parts guarantee the equal, lengths of the side

walls. Also, the number of integrals to be evaluated can

be reduced by one.

Consider now the numerical integration. of real definite

integrals (1), where the path of integration is between

two consecutive poles:

/

Uk+l 27+2

c@-l/l n (y – Yin)’/’]] dy. (A2)
Uk ‘m=l

From a functional viewpoint thk is a hyperelliptic

integral of the first kind for n ~ 2 [22], and hence it can

only be expressed in elliptic integrals under very rare

conditions. Unfortunately, the theory of hyperelliptic

functions of today is rather undeveloped, and this applies

also to a certain degree to their numerical evaluation. In

this work a newly derived analytic method will be used

in connection with very fast quadrature algorithms [23].

Consider an improper integral with singularities at both

endpoints:

/

b
1=

f(z)

(z – a)a(b – x)~dx’
(O < (a,~) < 1). (A3)

a

If we can extract the singular terms of the integral we are

left with a well-behaving function with removable singu-

larities. This is often an easy matter. Thus

I=~l+Iz+18 (A4)

where

b
1, =

/{

f(x) Aci BO

a }(~ – a)a(b – z)~ – (z – a)e – (b – z)fi ‘x

(A5.1)
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/

b
12 = AO(Z – a)-” dz = +.. (~ – ~)1-a (A5.2)

a

/

b
IS = Bo(b – w)-~ G?z= +6 (b – a) 1-8. (A5.3)

a

Now the evaluation of (A5.1) can be performed with any

available quadrature scheme observing the value of the

integrand at the endpoints: —BO(b — a) ‘p and —Ao (b —

a) ‘“, respectively. Very satisfactory results have been

achieved using automatic quadrature schemes with the

specified numerical error controlling the number of sub-

divisions of the integration interval [24].
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