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A Method for the Computation of the Characteristic Immittance
Matrix of Multiconductor Striplines with Arbitrary Wi idths
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" Abstract—An exact method for the computation of the charac-
teristic impedance matrix of coplanar coupled multiconductor strip-
lines with arbitrary widths is presented. The system of conductors is
enclosed in a rectangular shielding box with a homogeneous di-
electric medium. Use is made of conformal mapping by hyperelliptic
integrals. The reverse problem of determining the geometrical
dimensions for a given characteristic impedance matrix is solved
by employing an optimization procedure in conjunction with care-
fully determined initial approximations. This yields low computer
__running time compared to current methods for the treatment of
“multiconductor transmission lines.

I. INTRODUCTION

HE PROBLEM of determining the characteristic

impedance parameters of transmission lines has been
of great interest for a long time; in the beginning, chiefly
from a mathematical-physical standpoint. In [1] many
of these earlier works have been collected. Mostly, the
approach taken has been to consider the existence of
(quasi-) TEM modes only, thereby transforming the
problem to that of determining Maxwell’s capacitance
matrix of the conductors for a two-dimensional static
electrical potential problem. In the next step one can
proceed in several ways as follows. 1) Solve the Laplace
equation in the region of interest, either exactly with
orthogonal polynomial expansions, or with finite difference
methods. 2) Use the conformal mapping technique to
transform into a structure with known properties. 3) Solve
integral equations derived from Green functions, to men-
tion the most common methods.

A multitude of different methods under 1)-3) mentioned
previously is available for single or multiple conductor
transmission lines. The dielectric filling between the con-
ductors may be homogeneous or not. Below, the restricted
problem of multiple-strip transmission lines between
parallel ground planes and with homogeneous dielectric
will be treated, although extensions that approximate
inhomogeneous cases can be made, for instance, as in [27].

In 1943 Magnus and Oberhettinger [ 3] presented several
new practical single-strip transmission lines with exact
formulas for the characteristic impedance. The single-strip
conductor with zero thickness symmetrically placed be-
tween two parallel ground planes with and without walls
was treated. Later, Cohn [4] gave graphs and correction
formulas for the second case with a nonzero-strip thickness.
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Exact formulas were provided by Bates [5]. Other works
on single-strip transmission lines can be found in [6 -[9].

By introducing the even and odd wave impedances
Cohn succeeded in arriving at exact formulas and versatile
nomograms for the analysis of the symmetrical coupled
two-strip transmission line between parallel ground planes
[10]. Also, he included correction formulas for nonzero
thickness. Ekinge [8] gives formulas in the case when the
symmetrical two-strip conductor is surrounded by a
shielding rectangular box. The symmetrical case has also
been treated in [6] and [97]. The nonsymmetrical case in
which the two coupled strips are of different widths has
been given some attention with the previously mentioned
methods 1) as well as 2) in an approximate manner [9],
['117-[137. However, the results obtained differ consider-
ably. This case (with side walls as well) will be included
in the exact analysis which follows.

Multiple-strip transmission lines with more than two
inner conductors have been treated before to some extent.
Thus Itakura et al. [14] have derived exact formulas for
the case with three conductors with equal-width outer
conductors and conductor spacings. General N-strip
transmission lines have been approximately analyzed by
considering the different conductors as a number of pairs
of coupled conductors by methods such as [87 and [10]. In
case of equal widths and spacings of the conductors there
exists an extension of the method in [107] also used in
[14], whereby an infinite array of conductors is considered.
The reasoning is as follows. The conductors are given equal
potentials with opposite signs periodically repeated along
the array. By combining such different modes it follows
from superposition that nonadjacent conductors can be
given opposing potentials and the conductors in between
the potential zero. This was first shown by Dunn [157] and
later transferred to the case with the equal-width equal-
spacing strip conductors on the line of symmetry between
the two parallel ground planes [16 ] and [17]. Lennartsson
[187 has presented a network analogue method for the
solutions of the two-dimensional Laplace’s equation.
Three-conductor systems in a stratified dielectric within
a surrounding rectangular box can be readily analyzed on
a computer at the expense of time consumption and lack
of direct error control. An additional feature of this method
is that conductors situated on separated parallel lines can
be treated.

In the following, an exact analysis of a multiple-conduc-
tor strip transmission line placed symmetrically between
two parallel ground planes with or without side walls
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will be given. The conductor widths and the spacings in
between can be assigned arbitrarily.

II. CONFORMAL MAPPING BY SCHWARZ-
CHRISTOFFEL TRANSFORMATIONS

The conformal mapping technique has been applied to
a variety of problems in engineering and physics. The
invariant property of the Laplace equation under such a
transformation makes it possible to transform the problem
to a (simpler) geometry, where a solution is available or
can be readily found. This technique will be used below
as well.

The basic problem connected with characteristic im-
pedance analysis is that the region to be mapped is multi-
ply connected. This has been avoided by considering
symmetrical geometries only. In such cases the mapping
of a subregion with the conductors on the boundary is
possible. This is the starting point of the theory.

Consider a multiple-conductor stripline between two
parallel ground planes, Fig. 1. Here the widths and spac-
ings of the n inner conductors can be chosen arbitrarily.
The dielectric constant of the homogeneous medium is
¢ and the case with no side walls can be treated by setting
d = «. The upper half-plane part of the rectangular box
can now be mapped into the entire upper half-plane in
Fig. 2 by a Schwarz—Christoffel transformation. This can
be conveniently expressed in Jabobi’s elliptic functions

as given by
Yy = sn[ZKb(k) x,k] (D
where
b [Vg(O | 'L')\)T
~ Les(0 ] 9N
and
KTk ] = ’2—’u32 (o | z%)
with

A=0b/d = (=1)1,

This is clear from [197] and [3] when considering the
module equation

and

4
xw b @
(k) d
Here K is the complete elliptic function of the first kind,
and »,(0) are Jacobi’s theta functions as given in [207].
The configuration with no side walls, d = o, can be
obtained from (1) as a limiting case:

y = tanh (wz/b) (d = ). (1a)

It deserves mentioning that the use of Jacobi’s theta
functions facilitates the numerical computations con-
siderably [197].

In the next step we look for a mapping function which
transforms the y plane in such a way that a homogeneous
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Fig. 1. The multiconductor st}rli.p{iine surrounded by a rectangular
shield.
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Fig. 2. The intermediate mapping step.

field is obtained when a certain voltage distribution is
applied to the n inner conductors. This is again achieved
by a Schwarz—Christoffel transformation. The final con-
figuration with the required properties is shown in Fig. 3.
The mapping function is given by

dz n 2n-4-2
== II (v —=ym)/IL (y = yu)' (3)
Y m=1; mz=k m=1

where each of the numerator factors accounts for 180°
bends at » — 1 of the conductors in Fig. 3. There are n
such mappings with the kth conductor unfolded. A homo-
geneous electric field is now obtained for any voltage
applied to' conductor k& with the remaining conductors left
on floating potentials. This is obvious from the boundary
conditions on the side walls: d¢/0n = 0.

The geometrical dimensions of Fig. 3 are given by defi-
nite integrals of (3). However, the numerator polynomial
roots of the integrand are not given explicitly. To deter-
mine the numerator polynomial consider the following
kind of integrals:

Y2441 ) 2042
Fij= f Ly=/1I1 (y — yw) ] dy (4)
Yoi m=1

where the path of integration is along the 7th conductor
in Fig. 2. From Fig. 3 it appears that the total integral
must equal zero:

2 aFi; =0,

J=1

(¢# k) (5)

for all conductors but the kth one because z, = zpi41.
Rather than try to solve for the polynomial roots of the
numerator in (3) the corresponding coefficients a; have
been introduced. Thus the polynomial coefficients are
determined from

F.a, = 0, (k =1 ——>n) (6)

for each conductor & unfolded. Here Frisan (n — 1) X n
matrix obtained when the kth row is deleted from the
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Fig. 3. The final mapping step where the field can be made
homogeneous for certain conductor potentla.ls.

matrix
_F 1‘1 F 12 F ln—
F 21 F 22
F = .
_F nl F nn_J .

The matrix elements are determined by (4). The poly-
nomial coefficients are given by the column vector

a, = [aklyalﬂy’ . 'akn]T

with its first element arbitrarily chosen equal to unity.
Now, consider the integrals

~

2n+42

1 Y3 )
m/ Ly 11 (y — yw)?] dy.

Yoi—-1 m=1

Gi; = (7)

To obtain the distances between consecutive conductors
along the magnetic walls of Fig. 3, sums of the following
kind must be computed:

2 a;Gij. (8)
J=1

Next, the distance column vector
dk - [d}kade; b 'dn+l,k:|T
with its elements given in Fig. 3 is computed from

d. = Ga; (9)

where

Gll G12 Gln

G21 G22

_Gn+1 1 G’H‘l n_l
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and the elements are given by (7). From d;, the distances
between the different conductors and the ground con-
ductors,

hk = [hu,how,* * <hon JT

are easily determined. Finally, the length of the kth
unfolded conductor in Fig. 3 wy is given by

wr = fiTa, (10)

where ;T is the kth row of F. The integrals in (4) and (7)
appear to be improper with the integrand behaving singu-
larly at the endpoints. The analytical and numerical
aspects of such integrals are discussed in the Appendix.

III. THE DETERMINATION OF THE
CHARACTERISTIC IMMITTANCE
MATRIX

The configuration of Fig. 3 can now be used to deter-
mine the characteristic impedance matrix

21 212 21n
1 Z22
Z() = ( 1 1 )
| 2a1 Znn_|

To do this consider the Maxwell’s per-unit length capaci-
tance matrix of the n-conductor system [Fig. 4(a) ]:

€11 —Ci2 —C1n
—C21 Co2
C = (12)
| —Cm1 Cnn_]
where Cii = ¢; + Z Cij. (13)

=1 i

This matrix is related to ¥, = Zg! by the relation
Y, = vC, where v = ¢o/(e)!? is light’s velocity in the
dielectric medium while ¢, is the velocity of light in
vacuum. Now, apply a unit de voltage between conductor
k and the ground J, with the remaining conductors left
with floating potentials in Fig. 3. It is clear from the
previous discussion that the electric field is homogeneous
and that the paths of constant potentials parallel all
conductor surfaces. Thus every conductor takes a poten-
tial that is proportional to its height above the ground
conductor J. To compute the elements of Z; consider
(11) as representing a resistive n-port Fig. 4(b), each
port with the ground and the corresponding conductor as
terminals. From the definition of the z parameters we have

Vi

2 = — .
I Ij=0; jsk

(14)

V. and I, represent the voltage and current at the ith
and kth ports, respectively. Returning to Fig. 3, this is
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Fig. 4. (a) The per-unit length capacitances of a general n-
conductor transmission line. (b) Its characteristic impedance
matrix Z, representing a resistive n port.

exactly the condition to which we are confined with the
electric field in Fig. 3 kept homogeneous. Thus we have
for the diagonal elements of (11):

1/2 h
Ho ok
2zkk - ( ) -
€.€p Wy

The factor 2 arises from the fact that the conformal map-
ping is applied to the upper half-space of Fig. 2.

The off-diagonal elements can be computed as follows,
recognizing the n-port voltage transfer funetion:

(15)

ay, = v L (16)
I, Ii=0; 5k &kk
from elementary network theory. But Fig. 3 yields
hi
=, 17
= (17)
Thus
1/2 h
€,€) Wy

The complete characteristic impedance matrix is now given

by

wr W Wy
Z0 wr We
Zy, = 19
’ 2(51')1/2 ( )
wn ws Wnr
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where the free space characteristic impedance Z, =
(uo/ ) Y2 has been used. A simple inversion of (19) yields
the characteristic admittance matrix ¥,.

The computational efforts can be decreased by observing
the fact that characteristic immittance matrices are sym-
metrical. The number of definite integrals to be evaluated
therefore decreases from n(2n + 1) to n(3n + 1) /2.

IV. THE SYNTHESIS PROBLEM

So far, we have been concerned with the problem of
determining the characteristic immittance matrix for a
given structure, i.e., characteristic immittance analysis.
In practical design the reverse problem of determining
the structure for a given characteristic immittance matrix,
i.e., wave immittance synthesis, is of predominant interest.
The sparse treatment of hyperelliptic integrals in the
literature [4], [7] makes it still more difficult to find
their inverse functions. Thus in the synthesis the mapping
from Fig. 3 to Fig. 2 must be done by some type of optimi-
zation procedure employing a repeated mapping from
Fig. 2 to Fig. 3, while the mapping from Fig. 2 to Fig. 1
can be performed with the inverse function of (1):

F (aresin y,k) (20)

b

YT 2K (k)
where F is the normal elliptic integral of the first kind. In
the synthesis procedure used, the independent variable
vector is [ye,s, - Yon 7. The objective function is the
summed squared difference of elements between the
characteristic admittance matrix wanted and that ob-
tained from the optimization procedure. Counting the
number of variables involved we obtain2n — 1 and n(n +
1)/2, respectively, for the symmetrical matrix. To deal
with a well-determined problem only 2n — 1 elements of
the characteristic admittance matrix can be used in the
optimization. The most rational choice is the main diagonal
and the first offset diagonal corresponding to the conductor
shield and the neighboring conductor~conductor charac-
teristic admittances, these being the dominant quantities.
The reason for using only 2n — 1 out of 2n variables in
Fig. 2 is their inherent functional dependence. To show
this, employ the following bilinear transformation which
keeps —1 and -1 as fixed points:

r_yte

,y ay + 1 )

It is now easy to show that a suitable transformation
always yields the constraint 4’ = —ys,—1" from a choice of

a = {[(1 = y?) (1 — yona®)
— (1 + yayzas1) }/ (Y2 + Y2nr1).

Thus there are only 2n — 1 independent variables. Still
more features can be drawn from (21). Obviously, the
transformation is an analytical mapping that keeps the
characteristic immittance properties invariant. In the
synthesis case we can use the mapping of (21) on the
Tig. 2 structure obtained to alter the conductor positions
of the final structure of Fig. 1. For example, a certain

(21)

(22)
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Fig. 5. (a) The nonsymmetrically coupled transmission lines. (b)-(d) Some characteristic admittance matrix
data for different geometrical dimensions.
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TABLE I

COMPARISON BETWEEN THE EXACT ANALYSIS AND THE APPROXIMATION WITH CoHN’s METHOD APPLIED TO THE
NonsYMMETRICAL CoupLeED Two-WIRE TRANSMISSION LINE

Refer to Fig.5(a)

Deviation in percent (¥, ./¥,,/~¥,)
17vg2" 12

k v, 8 = .01

1

8= .1 s= 1.

.01 -4.0/45.7/+3.0

-1.6/%2.2/+0.13 +0.10/+0.13/-C. 14

V1o .1

-0.62/+0.84/+2.2

-0.42/40.5L/42.9 +0.08/-0.02/42.6

1. +0.07/-2.7/+0.09

+0.07/-0.02/+0.11 +0.07/-0,03/+0.12

.01 —5-4/49.8/+9.%

-2.8/+h.1/+2.9 +0.09/+40.12/+0.01

.1 -0.62/+0.56/+6.9

~0.49/40.31/+10.5 +0.07/-0.03/+11,5

conductor can always be placed anywhere on the line of
symmetry, or the conductors as a whole can be centered
to minimize the effects of the side walls. Of course, the
shape of the box can be arbitrarily changed in this step.
This flexibility obliterates the need to resynthesize a given
characteristic immittance matrix for different geometrical
structures.

For a useful synthesis procedure an effective optimiza-
tion procedure is not sufficient in terms of the number of
iterations needed, i.e., computer time and cost. It is also
important to support the synthesis procedure with a
sufficiently good starting approximation in Fig. 2 as
close as possible to the correct solution point in the
(2n — 1)-dimensional space. This is achieved with the
use of a modified Cohn procedure on consecutive pairs of
conductors in Fig. 1 with no side walls employed. This
is outlined in Section V. The latter condition is necessary
to obtain a good starting approximation and implies no
condition. whether to use side walls or not in the finally
synthesized structure of Fig. 1. The optimization procedure
being employed in the synthesis procedure is a transitional
Newton iteration/steepest descent algorithm with in-
ternal computation of the Jacobian. This algorithm is due
to Powell [21].

V. RESULTS AND DISCUSSIONS

The method just mentioned has been programmed and
run on an IBM 360/65 for some time. Because of the
automatic quadrature algorithm employed, which is
mentioned in the Appendix, it is possible to require an
analysis to be eorrect to a certain number of digits, thereby
reducing the computer time considerably for different
applications. The method has been checked against Cohn’s
method [107 and Ekinge’s rectangular box treatment [8]
which are exact in the case of two coupled symmetrical
conductors. No deviation in the first five digits of the
solution has been discovered. In the case of nonsym-
metrical coupled conductors, as in Fig. 5(a), some data
have been collected in Fig. 5(b)—(d). The characteristic
admittance for a configuration given by Fig. 5(a) has
been computed varying the distance between the con-
ductors, the width ratio, and the geometrical mean width.
From the diagrams it is observed that the conductor-
conductor characteristic admittance |y12| as expected
only varies slightly for a fixed conductor spacing and
geometrical mean width. The deviation is smaller than 6

and 12 percent for wi/w, = (10)Y2 and 10, respectively.
These percentages also give an indication of the errors in
approximately computing the conductor spacings from
the inverse of Cohn’s method [197 considering

yn’ = y22’ = (y11y22) 2 and w' = w = (w1w2)1/2-

Similarly, the widths can be computed with

yu” = y22” = Yii and w' = w)' = Wi, (1« = 1,2).
The resulting errors are shown in Table I for some cases.

The use of diagrams in finding the geometrical dimen-
sions is not convenient because of the many parameters -
involved. A user-oriented computer program is far more
flexible and is necessary for cases with more than two
coupled conductors. Some results from such cases are
shown in Table II, where they are compared with data
from earlier works by Kollberg [167]. It is shown how the
new method can be applied with an increasing number of
conductors to yield the characteristic coupling admit-
tances for an infinite array as a limit value. From Table
IT it is obvious that a very good approximation of the
limit value is obtained as soon as the number of conductors
is great enough to prevent the two coupling conductors
from being the outer ones. Also the table gives an indica-
tion of the error involved using the approximate method of
Kollberg [16].

The computer running time in cases of analysis is less
than 1 and 2 s for two and three coupled conductors,
respectively, with a required accuracy of three digits in
the result. For a constant accuracy the running time is
roughly increasing with n?, where » is the number of
conductors. The synthesis procedure takes the same time
of analysis for each step of iteration in the optimization
algorithm. The number of iterations increases as ~mn?
for multiple conductor systems.

It is also worth mentioning that the method given here
is applicable to any n-conductor problem that can be
conformally mapped on Iig. 2. The most immediate
structures to extend the r.ethod to are those similar to
those previously mentioned, but with finite thickness.
Obviously, hyperelliptic mapping functions similar to
those used here can be employed in transforming from
Fig. 2 to the thick-conductor structure. However, addi-
tional optimization techniques must be used for such

structures.
\
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TABLE II

CHARACTERISTIC ADMITTANCE PARAMETERS FOR MULTICONDUCTOR TRANSMISSION LINES wita EquaL WIDTHS
AND SpPACINGS

Refer to | w= 1875, 8 = .625 w = 625, s = 1875 %= 1,05, 8 = .35
Fig.1 ,
2 3 |y 5 ,[16] 3 Y 5 ] =16 3 4 =,016]
Y1q .713 1.71% 1718 | 1,928 2.850 { 2.841 2.841 3.598 || 5.6uk | 5.6uh  16.095
Yoo 1,82k 1.827 1.828 1.928 3.387 3.391 3.393 3.598 5. 714 5,714 6.095
¥a3 o713 | 1.827 [ 1.830 [1.928 2.84% | 3.39t | 3.396 |3.598 5.6k | 5.7k [6.095
Tz . .haée %363 4363 Jhe 1.168 1.167 1.167 1.200 WAy .lm'r' h375
Vo3 4372 Jat2 153 S 1.168 1.126 1.125 1,200 RSEI4 Bt 4375
Y13 8.24-2 1 7.74-2 | 7.73-2 [T.25-2 106 | 9.78-2 | 9.76-2 | 9.00-2 8.99~5 | 8,99-5 -
~¥Yoy - 7.7%2 | 7.24-2 |7.25-2 - 9.78-2 | 8.90-2 [9.00-2 - 8.99-5 -
-‘yw - 1.9%5-2 {1.81-2 [1.60-2 - 2.03-2 | 1.80~2 |1.60-2 - 2.26-8 -
Y45 - - 4.81-3 - - - 4.,20-3 - - - -
The Table values are normalized to
the free space cheracteristic ad-
mittance

VI. CONCLUSIONS

An exact theory based on conformal mapping technique
has been developed for the analysis of multiconductor
striplines enclosed in a rectangular box with a homogeneous
dielectric medium. Compared to methods based on lattice
approximations, such as [18], the advantages are the
following.

1) Explicit control of the error in the result.

2) A reduction in computer time of at least 30:1.

3) From 2) it also’follows that the synthesis of charac-
teristic immittance matrices by employing optimization
algorithms is economically feasible. One important draw-

_back of the method, which it shares with mapping tech-
niques in general, is that inhomogeneously filled media
can only be treated approximately.

The problem of synthesis has been solved for design
‘purposes by using an efficient optimization procedure
working with a repeated analysis technique.

APPENDIX

HYPERELLIPTIC MAPPING FUNCTIONS

In the mapping from Fig. 2 to Fig. 3 the followmg
mapping functlon is employed:

Mm4-2
2(y) = ]_ [II (v = vom)/T1 (v = yo)"=]dy. (A1)

From the theory of complex functions it is obvious that
we are dealing with a many valued analytical integrand
with 2n 4+ 2 branch points and with interconnecting
branch cuts. However, if we make infinitesimal semicircle
indentations around the branch points in the upper half-
plane of Fig. 2, we can keep the path of integration in one
Riemann sheet. The closure of the integration path with
an infinitely large upper half-plane semicircle now guaran-
tees the closure of the mapping in Fig. 3. This is clear

from Cauchy’s integral theorem, because the contributions
from the integration on the semicircles around the branch
points tend to zero with the radius. The real part of the
Cauchy integral now shows that the width of the upper
and lower conductors, k and J, are equal. Analogously, the
imaginary parts guarantee the equal lengths of the side
walls. Also, the number of integrals to be evaluated can
be reduced by one. ‘

Consider now the numerical integration of real definite
integrals (1), where the path of integration is between
two consecutive poles:

/Wcﬂ.

Yk

2n4+2

Cy*/I H1 (y — ym) 2|1 dy. (A2)

From a functional viewpoint this is a hyperelliptic
integral of the first kind for n > 2 [227], and hence it can
only be expressed in elliptic integrals under very rare
conditions. Unfortunately, the theory of hyperelliptic
functions of today is rather undeveloped, and this applies
also to a certain degree to their numerical evaluation. In
this work a newly derived analytic method will be used
in connection with very fast quadrature algorithms [237.
Consider an improper integral with singularities at both
endpoints:

b

f(=)
o (2 —0a)*(b—a)f

I= dz, (0< (a8) <1). (A3)
If we can extract the singular terms of the integral we are
left with a well-behaving function with removable singu-

larities. This is often an easy matter. Thus

I=5L+1+1 (A4)
where
_ b f(x) _ A . By }
I‘”fa{(x—aw)—x)ﬂ Goar G-n8 "
(A5.1)
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b 4
I, = / Az = o dz =T G- (A52)
a — Qa

b
I; = / By(b — x)Fda = % (b — a)r?. (A5.3)

Now the evaluation of (A5.1) can be performed with any
available quadrature scheme observing the value of the
integrand at the endpoints: —Bo(b — @)~ and —A.(b —
a)™?, respectively. Very satisfactory results have been
achieved using automatic quadrature schemes with the
specified numerical error controlling the number of sub-
divisions of the integration interval [24].
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